Reduction of multisymplectic manifolds

Casey Blacker

Euler International Mathematical Institute, and Saint Petersburg State University

> Good Morning SFARS 7 June 2021

- Background
- O Symplectic reduction
- Multisymplectic reduction

Based on:

B., Reduction of multisymplectic manifolds, *Lett. Math. Phys.*, 2021

1. Background

Reduction is a procedure that takes a space and returns a "smaller" space

$$(M,X) \xrightarrow{\text{restrict & quotient}} (M_{\mathrm{red}},X_{\mathrm{red}})$$

- The classic reduction result is the Marsden–Weinstein–Meyer symplectic reduction theorem.
- Reduction theorems are rife in adjacent fields: contact, cosymplectic, polysymplectic, Poisson, Courant, quasi-Hamiltonian, ...

The Problem of Multisymplectic Reduction

Reduction theory is by no means completed.... Only a few instances and examples of multisymplectic reduction are really well understood...so one can expect to see more activity in this area as well.

- J. Marsden and A. Weinstein, 2001, Comments on the history, theory, and applications of symplectic reduction

One of the most interesting problems in multisymplectic geometry is how to extend the well-known Marsden– Weinstein reduction scheme for symplectic manifolds to the case of multisymplectic structures.

— M. de León, 2018, *Review of "Remarks on multisymplectic reduction" by Echeverría-Enríquez, Muñoz-Lecanda, and Román-Roy*

2. Symplectic Reduction

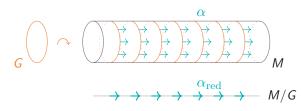
- *M* and *G* are connected,
- $\bullet \ \xi, \zeta \in \mathfrak{g}\text{,}$
- $\bullet \ \lambda,\tau \in \mathfrak{g}^*\text{,}$
- for $\mu \in \Omega^*(M,\mathfrak{g}^*)$ and $\xi \in \mathfrak{g}$, write

$$\mu_{oldsymbol{\xi}}:=\langle \mu, oldsymbol{\xi}
angle\in \Omega^*(M)$$

for the " ξ th component" of μ .

lf

- $G \curvearrowright M$ free and proper,
- $\alpha \in \Omega^*(M)$ invariant and horizontal ($\iota_{\mathfrak{g}} \alpha = 0$),



then

• $\exists ! \, lpha_{\mathrm{red}} \in \Omega^*(M/G)$ such that $lpha = \pi^* lpha_{\mathrm{red}}$,

•
$$d\alpha = 0 \implies d\alpha_{red} = 0.$$

Symplectic Manifolds

• *M* a smooth manifold.

Definition

A symplectic structure on M is a 2-form $\omega \in \Omega^2(M)$ which is

nondegenerate: $\forall X \in TM \setminus \{0\}$: $\iota_X \omega \neq 0$,

$$TM \xrightarrow{\sim} T^*M$$

• closed: $d\omega = 0$.

In his *Lectures on the Orbit Method*, A. Kirillov identifies three primary sources of examples:

- phase spaces T*Q
- complex algebraic manifolds
- coadjoint orbits $\mathcal{O}_{\lambda} \subseteq \mathfrak{g}^*$

Symplectic Hamiltonian Dynamics

 $\begin{array}{ll} \text{observables} & \longrightarrow & \text{symmetries} \\ \mathcal{C}^{\infty}(\mathcal{M}) \ni \boldsymbol{f} & \boldsymbol{X} \in \mathfrak{X}(\mathcal{M}) \ , \quad \mathcal{L}_{\boldsymbol{X}} \boldsymbol{\omega} = \boldsymbol{0} \\ & \mathbf{d} \boldsymbol{f} = \boldsymbol{\iota}_{\boldsymbol{X}_{\boldsymbol{f}}} \boldsymbol{\omega} \end{array}$



Symplectic Hamiltonian Actions

To specify a symplectic action $G \curvearrowright M \ldots$

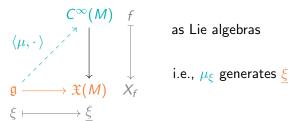
we could describe the induced map $\xi \mapsto \xi \dots$

or an assignment of Hamiltonian functions $\xi \mapsto f_{\xi}$.

When this is possible,* the action is called Hamiltonian.

*and $\xi \mapsto f_{\varepsilon}$ is a homomorphism of Lie algebras

moment map: Describe $G \curvearrowright M$ in terms of $C^{\infty}(M) \to \mathfrak{X}(M)$.



moment map: $\mu: M \to \mathfrak{g}^*$ Hamiltonian G-space: (M, ω, G, μ)

Symplectic Reduction

Two inputs:

- Hamiltonian G-space (M, ω, G, μ)
- 2 parameter $\lambda \in \mathfrak{g}^*$

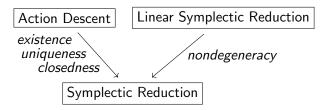
The reduced space is $M_{\lambda} := \mu^{-1}(\lambda)/G_{\lambda}$.

Theorem (Marsden–Weinstein '74, Meyer '73)

If $\mu^{-1}(\lambda) \subseteq M$ is smooth and $G_{\lambda} \curvearrowright \mu^{-1}(\lambda)$ is free and proper, then there is a unique symplectic form $\omega_{\lambda} \in \Omega^{2}(M_{\lambda})$ such that $\pi^{*}\omega_{\lambda} = i^{*}\omega$.

restrict to
$$\{\mu = \lambda\}$$
 $\pi^* \omega_\lambda \quad \mu^{-1}(\lambda) \stackrel{i}{\longrightarrow} M$
quotient by $G_\lambda \qquad \pi \downarrow$
 $\omega_\lambda \qquad M_\lambda$

Symplectic Reduction — Proof



() Apply the Action Descent Lemma to $G_{\lambda} \curvearrowright \mu^{-1}(\lambda)$ and $i^*\omega$.

Our Symplectic Reduction to conclude that ω_λ is nondegenerate.

1. describe $G \curvearrowright M$ in terms of ω moment map μ

2. identify a distinguished reduced space reduction at $\mu = 0$

3. use the ambiguity in 1. to obtain a family of reduced spaces reduction at $\mu - \lambda = 0$, i.e. reduction at $\mu = \lambda$

Note: If $G_{\lambda} \neq G$, then $\mu - \lambda : M \rightarrow \mathfrak{g}^*$ is not a moment map for either $G \curvearrowright M$ or $G_{\lambda} \curvearrowright M$.

3. Multisymplectic Reduction

Multisymplectic Manifolds

• *M* a smooth manifold.

Definition

A *k*-plectic structure on *M* is a (k + 1)-form $\omega \in \Omega^{k+1}(M)$ which is

• nondegenerate: $\forall X \in TM \setminus \{0\}$: $\iota_X \omega \neq 0$,

$$TM \hookrightarrow \Lambda^k T^*M$$

2 closed: $d\omega = 0$,

- {1-plectic structures} = {symplectic structures}
- Multisymplectic geometry arises as a natural framework for classical field theories.

Multisymplectic Hamiltonian Dynamics

 $\begin{array}{ccc} \text{observables} & \longrightarrow & \text{symmetries} \\ \hline \mathcal{C}^{\infty}(\mathcal{M}) \supset f & & X \in \mathfrak{X}(\mathcal{M}) \\ \Omega^{k-1}_{H}(\mathcal{M}) \ni \alpha & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & &$

Hamiltonian vector fields are indeed multisymplectic symmetries:

$$\mathcal{L}_{X_{\alpha}}\omega = \mathrm{d}\iota_{X_{\alpha}}\omega + \iota_{X_{\alpha}}\mathrm{d}\omega$$
$$= \mathrm{d}\mathrm{d}\alpha$$
$$= 0$$

 $\begin{aligned} \bullet \ \{\alpha,\beta\} &= \mathcal{L}_{X_{\alpha}}\beta & \leftarrow \text{Leibniz bracket} \text{ (Jacobi, but not antisymmetric)} \\ \bullet \ \{\alpha,\beta\}' &= \iota_{X_{\alpha}} \mathrm{d}\beta = \iota_{X_{\alpha}} \iota_{X_{\beta}}\omega \end{aligned}$

Equal up to a coboundary:

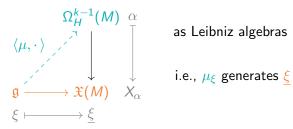
$$\mathcal{L}_{\mathbf{X}_{\alpha}}\beta = \iota_{\mathbf{X}_{\alpha}}\mathrm{d}\beta + \mathrm{d}\iota_{\mathbf{X}_{\alpha}}\beta$$

 $\alpha \mapsto X_{\alpha}$ is a homomorphism of Leibniz algebras:

$$d\{\alpha,\beta\} = d\mathcal{L}_{X_{\alpha}}\beta = \mathcal{L}_{X_{\alpha}}\iota_{X_{\beta}}\omega = \iota_{[X_{\alpha},X_{\beta}]}\omega$$
$$\implies X_{\{\alpha,\beta\}} = [X_{\alpha},X_{\beta}]$$

Multisymplectic Hamiltonian G-Spaces

moment map: Describe $G \curvearrowright M$ in terms of $\underbrace{\mathbb{C}^{\infty}(M)}{\mathbb{C}^{\infty}(M)} \to \mathfrak{X}(M)$. $\Omega_{\mu}^{k-1}(M)$



moment map: $\mu \in \Omega^{k-1}(M, \mathfrak{g}^*)$ Hamiltonian G-space: (M, ω, G, μ)

The Moment Map Conditions

•
$$G \curvearrowright M$$

• $\mu \in \Omega^{k-1}(M, \mathfrak{g}^*)$

Hamiltonian condition:

$$\mathrm{d}\mu_{\xi} = \iota_{\xi}\omega$$

2 Leibniz condition:

$$\mu_{[\xi,\zeta]} = \{\mu_{\xi}, \mu_{\zeta}\}$$

equivalently,

$$\mathcal{L}_{\xi}\mu_{\zeta} = \mu_{[\xi,\zeta]}$$

The Space of Moment Maps

•
$$(M, \omega, G, \mu)$$
 Hamiltonian G-space

•
$$\phi \in \Omega^{k-1}(M, \mathfrak{g}^*)$$

Question: When is $\mu + \phi$ a moment map?

• $d\phi = 0$, since

$$d(\mu + \phi)_{\xi} = \iota_{\xi}\omega \iff d\phi_{\xi} = 0.$$
• $\mathcal{L}_{\xi}\phi_{\zeta} = \phi_{[\xi,\zeta]}$, as
$$\mathcal{L}_{\xi}(\mu + \phi) = (\mu + \phi)_{[\xi,\zeta]} \iff \mathcal{L}_{\xi}\phi = \phi_{[\xi,\zeta]}.$$

i.e. ϕ is a moment map for the trivial action $G \curvearrowright M$.

The space of moment maps is an affine space modeled on $\{\phi \in \Omega^{k-1}(M, \mathfrak{g}^*) \mid d\phi = 0, \ G_{\phi} = G\}.$

The Leibniz Condition and the Induced Action on Forms

• $\phi \in \Omega^*(M, \mathfrak{g}^*)$

 $\bullet \ \xi \in \mathfrak{g}$

 $\begin{array}{ll} \forall \zeta \in \mathfrak{g} : \ \mathcal{L}_{\xi} \phi_{\zeta} = \phi_{[\xi,\zeta]} & \iff \forall \zeta \in \mathfrak{g} : \ \mathbf{0} = \mathcal{L}_{\xi} \phi_{\zeta} - \phi_{[\xi,\zeta]} \\ & = \mathcal{L}_{\xi} \phi_{\zeta} + \langle \mathrm{ad}_{\xi}^{*} \phi, \zeta \rangle \\ & = \langle \mathcal{L}_{\xi} \phi + \mathrm{ad}_{\xi}^{*} \phi, \zeta \rangle \\ & \iff \quad \mathbf{0} = (\mathcal{L}_{\xi} + \mathrm{ad}_{\xi}^{*}) \phi \\ & \iff \quad \xi \in \mathfrak{g}_{\phi} \end{array}$

in terms of the induced action $G \curvearrowright \Omega^*(M, \mathfrak{g}^*)$. Thus,

$$\forall \xi, \zeta \in \mathfrak{g} : \mathcal{L}_{\xi} \phi_{\zeta} = \phi_{[\xi, \zeta]} \iff G \cdot \phi = \phi$$

Rather than:

- family of moment maps $\{\mu \phi \, | \, \mathrm{d}\phi = 0, \, G_{\phi} = G\}$
- reduction at $\mu \phi = 0$

We instead consider:

- fixed moment map μ
- family of levels $\{\phi | d\phi = 0, G_{\phi} = G\}$
- reduction at $\mu = \phi$

 ϕ -level set:

$$\mu^{-1}(\phi) := \{\mu = \phi\}$$

Multisymplectic Reduction

Two inputs:

- **1** Hamiltonian *G*-space (M, ω, G, μ)
- 2 parameter $\phi \in \Omega^{k-1}(M, \mathfrak{g}^*)$ with $\mathrm{d}\phi = 0$

Define the reduced space,

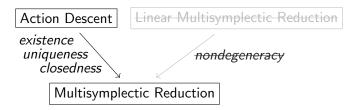
• $M_{\phi} := \mu^{-1}(\phi)/G_{\phi}$

Theorem (B. '20)

If $\mu^{-1}(\phi) \subseteq M$ is smooth and $G_{\phi} \curvearrowright \mu^{-1}(\phi)$ is free and proper, then there is a unique closed (k + 1)-form ω_{ϕ} on M_{ϕ} such that $\pi^* \omega_{\phi} = i^* \omega$.

restrict to {
$$\mu = \phi$$
} $\pi^* \omega_{\phi} \quad \mu^{-1}(\phi) \stackrel{i}{\longrightarrow} M$
quotient by $G_{\phi} \qquad \pi \downarrow$

Multisymplectic Reduction — Proof Idea



() Apply the Action Descent Lemma to $G_{\phi} \curvearrowright \mu^{-1}(\phi)$ and $i^*\omega$.

2 Use Linear Multisymplectic Reduction to conclude that ω_{ϕ} is nondegenerate.

Two steps:

- $G_{\phi} \curvearrowright M$ preserves $\mu^{-1}(\phi)$,
- 2 $i^*\omega$ is invariant and horizontal.

Multisymplectic Reduction — Proof (Step 1)

• $G_{\phi} \curvearrowright M$ preserves $\mu^{-1}(\phi)$.

•
$$\mu^{-1}(\phi) = \{\mu - \phi = 0\}$$

•
$$\forall \xi, \zeta \in \mathfrak{g}_{\phi}$$
,
 $\mathcal{L}_{\xi}(\mu - \phi)_{\zeta} = (\mu - \phi)_{[\xi, \zeta]}$, by the Leibniz condition,
 $= 0$ on $\mu^{-1}(\phi)$.

- 2 $i^*\omega$ is invariant and horizontal.
 - invariant: Hamiltonian actions are multisymplectic.
 - horizontal: For $\xi \in \mathfrak{g}_{\phi}$,

$$u_{\xi} i^* \omega = i^* \upsilon_{\xi} \omega, \quad \text{since } G_{\phi} \text{ preserves } \mu^{-1}(\phi),$$

$$= i^* \mathrm{d} \mu_{\xi}, \quad \text{by the Hamiltonian condition,}$$

$$= i^* \mathrm{d} \phi_{\xi}, \quad \text{since } \mu = \phi \text{ on } \mu^{-1}(\phi),$$

$$= 0, \qquad \text{as } \phi \text{ is closed.}$$

Thank you!